Source code for numpoly.array_function.true_divide

"""Return true division of the inputs, element-wise."""
from __future__ import division
from typing import Any, Optional

import numpy
import numpy.typing
import numpoly

from ..baseclass import ndpoly, PolyLike
from ..dispatch import implements_ufunc

DIVIDE_ERROR_MSG = """
Divisor in division is a polynomial.
Polynomial division differs from numerical division;
Use ``numpoly.poly_divide`` to get polynomial division."""


[docs]@implements_ufunc(numpy.true_divide) def true_divide( x1: PolyLike, x2: PolyLike, out: Optional[ndpoly] = None, where: numpy.typing.ArrayLike = True, **kwargs: Any, ) -> ndpoly: """ Return true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Args: x1: Dividend array. x2: Divisor array. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out: A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where: This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. kwargs: Keyword args passed to numpy.ufunc. Return: This is a scalar if both `x1` and `x2` are scalars. Raise: numpoly.baseclass.FeatureNotSupported: If `x2` contains indeterminants, numerical division is no longer possible and an error is raised instead. For polynomial division see ``numpoly.poly_divide``. Example: >>> q0q1q2 = numpoly.variable(3) >>> numpoly.true_divide(q0q1q2, 4) polynomial([0.25*q0, 0.25*q1, 0.25*q2]) >>> numpoly.true_divide(q0q1q2, [1, 2, 4]) polynomial([q0, 0.5*q1, 0.25*q2]) """ x1, x2 = numpoly.align_polynomials(x1, x2) if not x2.isconstant(): raise numpoly.FeatureNotSupported(DIVIDE_ERROR_MSG) x2 = x2.tonumpy() if out is None: out_ = numpoly.ndpoly( exponents=x1.exponents, shape=x1.shape, names=x1.indeterminants, dtype=numpy.common_type(x1, numpy.array(1.0)), ) else: assert len(out) == 1 out_ = out[0] assert isinstance(out_, numpoly.ndpoly) for key in x1.keys: out_[key] = 0 numpy.true_divide( x1.values[key], x2, out=out_.values[key], where=numpy.asarray(where), **kwargs, ) if out is None: out_ = numpoly.clean_attributes(out_) return out_